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A novel lower-complexity construction scheme of quasi-cyclic low-density parity-check (QC-LDPC) codes for optical 

transmission systems is proposed based on the structure of the parity-check matrix for the Richardson-Urbanke (RU) 

algorithm. Furthermore, a novel irregular QC-LDPC(4 288, 4 020) code with high code-rate of 0.937 is constructed by 

this novel construction scheme. The simulation analyses show that the net coding gain (NCG) of the novel irregular 

QC-LDPC(4 288,4 020) code is respectively 2.08 dB, 1.25 dB and 0.29 dB more than those of the classic RS(255, 239) 

code, the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code at the bit error rate (BER) of 

10-6. The irregular QC-LDPC(4 288, 4 020) code has the lower encoding/decoding complexity compared with the 

LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code. The proposed novel QC-LDPC(4 288, 

4 020) code can be more suitable for the increasing development requirements of high-speed optical transmission sys-

tems. 
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The quasi-cyclic low-density parity-check (QC-LDPC) 

codes have many advantages[1-4], so the research of 

QC-LDPC codes for optical transmission systems has 

become a hot topic in recent years[5-10]. For constructing 

an excellent QC-LPDC code to meet the increasing re-

quirements of optical transmission systems, a novel 

lower-complexity construction scheme for QC-LDPC 

codes is proposed based on Richardson-Urbanke (RU) 

algorithm in this paper. Furthermore, a lower-complexity 

irregular QC-LDPC(4 288, 4 020) code with the code 

rate of 0.937 is constructed, and the simulation analyses 

show that it has better error correction performance. 

The LDPC codes are usually long in practical applica-

tion, and the encoding complexity is proportional to the 

square of the code length through using generator matrix 

for encoding directly, namely the encoding complexity is 

O(n2), where n is the code length. Therefore, the code is 

encoded by RU algorithm using the check matrix as 

shown in Fig.1[11], where the sub-matrix A is a 

(m−g)×(n−m) matrix, the sub-matrix B is a (m−g)×g 

matrix, the sub-matrix C is a g×(n−m) matrix, the 

sub-matrix D is a g×g matrix, the sub-matrix T is a 

(m−g)×(m−g) matrix, and the sub-matrix E is a g×(m−g) 

matrix. In addition, it is proved that the complexity of the 

encoding is O(n)+O(g2), where n is the code length and g 

is the dimension of the square matrix D. O(g2) appears 

because of inversion of the matrix φ (φ=ET
−1

B+D). 

 

 

Fig.1 The partition of the check matrix in RU encoding 

 

Set the codeword as c=(s, p1, p1), where s corresponds 

to the information part, p1 and p2 correspond to the two 

parts of the check part, and their lengths are g and m−g, 

respectively. Using the check equation Hc
T=0

T and the 

partition of the matrix shown in Fig.1, it can be inferred 

that 

T T T

1 2
+ + = 0As Bp Tp ,                       (1) 

T T T

1 2
s + + = 0C Dp Ep .                      (2) 
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Define φ=ET
−1

B+D, and it can be obtained that 

T 1 1 T

1
( )− −= +p ET A C sϕ ,                     (3) 

T 1 T T

2 1
( )−= +p T As Bp ,                      (4) 

where s stands for the information part of the codeword, 

the size of the unit matrix in the check matrix H is L×L, 

and p1 and p2 stand for the front L bits and the last 

(m−1)L bits of the check part, respectively.  

Thus, it can be obtained that 

T 1 1 T 1 1 T T

1
( ) ( )− − − −= + = +p ET A C s ET As Csϕ ϕ .   (5) 

As matrix φ
−1 is not a sparse matrix under normal cir-

cumstances, the computational complexity of p1 can be 

represented as O(N)+O(L2), where N=nL. Nevertheless, 

if matrix φ is a unit matrix or a simple circulant permuta-

tion matrix, the computational complexity of p1 can be 

reduced to O(N) in the case of ignoring the size of the 

circulant permutation matrix. This is also the core con-

cept of the novel construction scheme based on RU algo-

rithm in this paper. 

A construction scheme of the check matrix of irregular 

QC-LDPC codes is proposed based on the structural 

characteristics of QC-LDPC codes and the theoretical 

analysis of RU algorithm in this paper. The check matrix 

is an approximate lower triangular one, and the low- 

complexity and efficient encoding method of the 

QC-LDPC code is given. Richardson[11], MacKay[12], 

Eleftheriou[13] and others have tried to use the approxi-

mate lower triangular matrix to construct the check ma-

trix. The novel construction scheme in this paper is an 

improved method of the RU algorithm. 

At first, the check matrix H is divided into HI and HP. 
HI generates the information bit of the codeword, and HP 

generates the check bit of the codeword, namely 

H=[HI|HP]. HI is an mL×kL matrix, and HP is an mL×mL 

matrix. In order to make the encoding more efficient, the 

matrix of the check part HP is converted into the ap-

proximate lower triangular matrix. The concrete form of 

the check matrix is shown as 
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where HI is composed of 0 matrices or circulant shift 

matrices. In HI, the size of each 0 matrix or circulant 

shift matrix is L×L, and the number of the 0 matrices or 

circulant permutation matrices is m×k. 0 in HP stands for 

0 matrix, I in HP stands for the unit matrix, and the size 

of them is also L×L. Pbi with bi=0, 1, 2, …, L−1 stands 

for the second circulant shift matrix of the unit matrix, 

and Py is selected in l (l≠1, m) row, where l is selected as 

half of m generally. Based on the construction scheme of 

RU algorithm, the check matrix can be divided as 

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

A B T
H

C D E
,                         (7) 

where A is a (m−1)L×kL matrix, B is a (m−1)L×L ma-

trix, T is a (m−1)L×(m−1)L matrix, C is an L×kL matrix, 

D=P
x is an L×L matrix, and E is an L×(m−1)L matrix. 

Assuming HP is full rank, namely each row of HP is line-

arly independent, this linearly independent condition 

obtained by using the Gaussian elimination method 

means that the matrix φ=ET
−1

B+D is full rank. Let c be 

the codeword to be transmitted, and then Hc
T=0

T can be 

obtained.  

According to Eqs.(6) and (7), the following formula 

can be deduced and obtained 
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where 1( , ) i i jk

j
b b bbi j

k i

++ + +

=

= =∏ �

P P P , the following formula 

can be obtained by B
T=[(Pb1)T 0 … (Py)T 0 …0] and 

E=[0 0 …0 m
b

P ] as 

( ), 11 (2, 1) (3, 1)
m

b mb m m −− − −⎡ ⎤= =⎣ ⎦…ET B P P P P I B  

1
(2, 1) ( 1, 1)

m m
b bbm l m y− + −+ =P P P P P P  

(1, ) ( 1, )m l m y++P P P .                           (9) 

When the structure of the check matrix H is shown as 

Eqs.(6) and (7), if x and y meet the following formulas as 

1

mod

m

i

i

x b L

=

=∑ ,                          (10) 

1

mod

m

i

i l

y b L

= +

= −∑ ,                         (11) 

the matrix φ=ET
−1

B+D is a unit matrix. 

The detailed encoding process is shown as follows:  

Step1: Calculate As
T and Cs

T. 

Step2: Calculate ET
−1

As
T=[P(2,m) … Pm]As

T. 

Step3: Calculate p1
T, p1

T =ET
−1

As
T+Cs

T. 

Step4: Calculate p2
T, Tp2

T=As
T+Bp1

T. 

Ignore the circulant shift operation in the whole en-

coding process, and only focus on the condition of exclusive 

or operation. Then the encoding complexity is shown in 

Tab.1. Here, R=1−m/n stands for the code rate, N=nL stands 
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for the code length, supposing c stands for the average 

weight of each column of the check matrix, and the weight 

of the check matrix is expressed as w(x), namely, the num-

ber of nonzero elements in check matrix. According to 

Eqs.(6) and (7), w(A)+w(C)=cN−(2m+1)L can be obtained, 

and the calculation amount of As
T and Cs

T in step 1 is 

cN−(3m+1)L. The calculation amount of ET
−1

As
T in step 

2 is (m−2)L because of w(ET
−1)=(m−1)L. And the calcu-

lation amount of L in step 3 can be obtained according to 

the calculation amounts in step 1 and step 2. As the cal-

culation amounts of As
T+Bp1

T and p2
T are respectively 

2L and (m−2)L, the total encoding complexity of the 

novel construction scheme proposed in this paper for 

QC-LDPC codes is (c−1+R)N−2L, namely the encoding 

complexity of O(N). 

 

Tab.1 The complexity of the encoding process (Module 2 

operation) 

Encoding steps The times of exclusive or operation 

Step1 cN−(3m+1)L  

Step2 (m−2)L 

Step3 L 

Step4 mL 

Total (c−1+R)N−2L 

 

Using the original RU algorithm, suppose that the 

structures of sub-matrices of the check matrix are all 

approximately lower triangular and the sub-matrices 

have the same weight as that of the matrix in Eq.(8). As 

the weight of φ−1 is L2/2, it is easy to infer that the times 

of module 2 addition operations in the whole encoding 

process are (c−1+R)N−3L+L2/2. Define ρ as  

2

( 1 ) 2

( 1 ) 3 / 2

c R N L

c R N L L

ρ − + −= =
− + − +

 

( 1 ) 2

( 1 ) 3 / 2

c R n

c R n L

− + −
− + − +

.                      (12) 

When L>2 and ρ<1, it can be noticed that with the in-

crease of L, ρ decreases constantly. Therefore, when the 

code length is certain, with the increase of the dimension 

L of the sub-matrix in check matrix, the encoding com-

plexity of the novel construction scheme based on RU 

algorithm for QC-LDPC codes in this paper will be much 

smaller than that of the original RU algorithm. Mean-

while, the efficiency of the encoding is improved, and 

the time delay of the encoding is reduced. 

In order to adequately demonstrate the performance of 

the QC-LDPC code constructed by the proposed novel 

construction scheme, the check matrix of the QC-LDPC 

code with m=4, n=64 and L=67 is considered and con-

structed emphatically under the premise that the code 

rate and the redundancy of the constructed QC-LDPC 

code are the same as those of the classic RS(255, 239) 

code in ITU-T G.975[14], the LDPC(32 640, 30 592) code 

in ITU-T G.975.1[15] and the irregular QC-LDPC(3 843, 

3 603) code constructed based on the Galois field (GF(q)) 

multiplicative group[5]. Since the QC-LDPC code is con-

structed by using the check matrix to encode indirectly, 

in this process, the key references are the parameters 

produced after the check matrix H is converted into the 

generator matrix G. These parameters are the actual pa-

rameters of the final QC-LDPC code type, namely the 

row number and column number of the generator matrix 

correspond to the code length and the information bit, 

respectively. So constructed with the above parameters, 

the row number and the column number of generator 

matrix G are 4 288 and 4 020, respectively. Moreover, 

the row weight and the column weight of the check ma-

trix are different, so the constructed code is an irregular 

QC-LDPC(4 288, 4 020) code with the code rate of 

0.937, which can meet the requirements of the error cor-

recting code for optical transmission systems. 

The better decoding performance of QC-LDPC codes 

can be gotten by using the belief propagation (BP) de-

coding algorithm (namely, the sum product algorithm 

(SPA) decoding) in the simulation process. So the log 

likelihood ratio belief propagation (LLR-BP) decoding 

algorithm is applied to decode the QC-LDPC code, while 

the Berlekamp-Massey iteration decoding algorithm is 

applied to decode RS(255, 239) code in this paper. Con-

structing LDPC codes is easier, and the encoding and 

decoding complexity is lower in GF(2), compared with 

that in the non-binary field. The corresponding modula-

tion in GF(2) is binary phase shift keying (BPSK), and 

QC-LDPC codes are applied in optical transmission sys-

tems. Therefore, the transmission channel is addictive 

white Gaussian noise (AWGN) channel approximately. 

The girth-4 occurrence ought to be avoided in the proc-

ess of constructing the check matrix. The girth-4 of the 

check matrix for the irregular QC-LDPC(4 288, 4 020) 

code is tested by MATLA, and no girth-4 occurrence is 

found while a small quantity of girth-6 occurrences are 

found. Meanwhile, the error correction performance of 

the QC-LDPC(4 288, 4 020) code is simulated at the 

16th iteration time, and the curves of the relationship 

between bit error rate (BER) of the code type and sig-

nal-to-noise ratio (SNR) can be obtained as shown in 

Fig.2. The number of the iteration times is 16 which can 

achieve a better balance among the iteration times, the 

error correction performance and the decoding complex-

ity. 

In order to demonstrate the error correction perform-

ance of the irregular QC-LDPC(4 288, 4 020) code fully, 

the comparison among the irregular QC-LDPC(4 288, 

4 020) code, the RS(255, 239) code, the LDPC(32 640, 

30 592) code and the irregular QC-LDPC(3 843, 3 603) 

code is performed. In addition, these four codes have the 

same code rate of 0.937. The results are shown in Fig.2 

when the irregular QC-LDPC(4 288, 4 020) code is at the 

16th iteration by applying the LLR-BP decoding algo-

rithm, and the numerical results are listed in Tab.2 at BER 

of 10-6. 



YUAN et al.                                                               Optoelectron. Lett. Vol.12 No.2 ·0135· 

 

 

Fig.2 The comparison of the error correction per-

formance among the irregular QC-LDPC(4 288,4 020) 

code and other codes 
 

Tab.2 The comparison of the error correction per-

formance among the irregular QC-LDPC(4 288, 4 020) 

code and other three codes at BER=10
-6

 

Code type NCG 

(dB) 

Distance from the 

Shannon limit (dB) 

RS(255, 239) 3.28 3.34 

LDPC(32 640, 30 592) 4.11 2.51 

QC-LDPC(3 843, 3 603) 5.07 1.55 

QC-LDPC(4 288, 4 020) 5.36 1.26 

 

From Tab.2, it can be known that the net coding gain 

(NCG) of the irregular QC-LDPC(4 288, 4 020) code is 

respectively 2.08 dB, 1.25 dB and 0.29 dB more than 

those of the RS(255, 239) code, the LDPC(32 640, 

30 592) code and the irregular QC-LDPC(3 843, 3 603) 

code at BER of 10-6. Therefore, the error correction per-

formance of the irregular QC-LDPC(4 288, 4 020) code 

constructed by the proposed construction scheme is ob-

viously superior. 

A novel lower-complexity construction scheme of 

QC-LDPC codes with the approximate lower triangular 

structure is proposed to better meet the increasing de-

velopment requirements of optical transmission systems 

in this paper. Furthermore, an irregular QC-LDPC 

(4 288,4 020) code is constructed by this novel construc-

tion scheme. The simulation results show that the error 

correction performance of the irregular QC-LDPC(4 288, 

4 020) code is improved more significantly than those of 

the RS(255, 239) code in ITU-T G.975, the LDPC 

(32 640, 30 592) code in ITU-T G.975.1 and the irregular 

QC-LDPC(3 843, 3 603) code constructed based on the 

Galois field multiplicative group. Furthermore, compared 

with the LDPC(32 640, 30 592) code and the irregular 

QC-LDPC(3 843, 3 603) code, the irregular QC-LDPC 

(4 288, 4 020) code has lower encoding/decoding com-

plexity. Therefore, the irregular QC-LDPC(4 288, 4 020) 

code can be better used in high-speed long-haul optical 

transmission systems.  
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